
Mac OS 8 Only Application 1996 WWDC

Mac OS 8 Only Application

This paper describes a Mac OS 8 Only Application.

1.0 Definition

A Mac OS 8 Only Application is a new application type that explicitly
takes advantage of Mac OS 8 technologies. It only uses preferred
Mac OS 8 technologies (APIs).

This paper describes two distinct types of Mac OS 8 Only applications:

1. User Interface Application

2. Server programs

If you are concerned with binary or source compatibility (i.e you are
starting from a System 7.x source base), see the Mac OS 8 Transitional
Application document and/or the Mac OS 8 Compatible Application
document.

1.1 User Interface Application

The User Interface Application is a classification of application which has
windows, menus, dialogs, controls, etc. It often is document-centric and
supports multiple windows. Most mainstream productivity applications fall
into this category.

Two major technologies, Events and HIObjects, which have a profound
affect on User Interface applications have changed in Mac OS 8.

Mac OS 8 Only Application WWDC 1996

Mac OS 8 Only Application WWDC 1996

1.1.1 Events

Overview The code of a User Interface application is a collection of routines. In a
Mac OS 8 application, these routines can be reached by Apple Event and
SOM dispatching in addition to the traditional bindings provided by a
compiler and linker. In Mac OS 8, Apple Event dispatching is the principle
“plumbing” for connecting “black boxes” of routines together. An interface
file (for example, HIWindows.idl, HILists.idl, or HIDialogs.idl) often
represents a “black box” or component.

In a Mac OS 8 application, Apple Events are used for virtually all
communication between the operating system components and the
application. Apple Events are used to communicate low-level information,
such as key presses and mouse movement, subsuming the role that low-
level events played in System 7. Apple Events also continue to be used for
higher-level semantic events, such as Open Document, Print, and Quit.

If unhandled by the application, low-level events are typically handled by
various Mac OS 8 components that increase the meaning of the event by
adding, refining, or otherwise transforming the information. Each
component then produces an event with higher semantic meaning, which is
handled by another component.

The developer of a Mac OS 8 application is often concerned with the point
in each “event transformation pipeline” at which the application wants to
tap in, with Apple Event handlers, to receive information. Generally, the
further down the pipeline, the more the operating system is doing for the
application.

In the simplest terms, a Mac OS 8 Only Application:

• Creates one or more Apple Event Handler Tables using
AENewHandlerTable(),

• Installs one or more Apple Event Handlers into each table using
AEInstallHandler(),

• Associates the table with an Apple Event Dispatcher using
AEPushDispatcherHandlerTable(),

• If debugging, sets breakpoints in the handlers installed in the tables as
needed,

• and gives control “forever” to the Apple Event Dispatcher using
AEReceive().

Mac OS 8 Only Application WWDC 1996

Mac OS 8 Only Application WWDC 1996

Application
Startup

A Mac OS 8 application does not have an event loop in the traditional
System 7 sense. Rather, after installing an initial set of process-wide Apple
Event handlers, the application makes a single call to the AEReceive
function, which retains control until an Apple Event handler returns a
special error code, errAEReceiveTerminate. Typically the application’s
Quit handler will return this error code. Inside AEReceive, the Apple Event
manager uses Mac OS 8 microkernel services to yield processor time until
an event is available for the application. A simple Mac OS 8 application’s
startup code and Quit handler might look like this:

main()
{
 AEHandlerTableRef processTable;
 InitFonts();
 InitCursor();
 AENewHandlerTable(&processTable, 0);
 AEInstallHandler(processTable,
 kCoreEventClass,
 kAEQuitApplication,
 HandleQuit,
 0);

AEPushDispatcherHandlerTable(
 AEGetDefaultDispatcher(),
 processTable);

CreateMenus();

AEReceive(AEGetDefaultDispatcher(),
 kAEReceiveForever);

return 0;
}

OSStatus HandleQuit(const AppleEvent *event,
AppleEvent *reply, void *refCon,
AEHandlerTableRef table)

{
return errAEReceiveTerminate;

}

Mac OS 8 Only Application WWDC 1996

Mac OS 8 Only Application WWDC 1996

• The application first initializes the Font Manager and the system cursor.
Note that a Mac OS 8 application no longer needs to call any of the
other system initialization routines (InitGraf, InitWindows,
InitMenus, TEInit, or InitDialogs). The QuickDraw shared
library now exports a QDGlobals data structure for use by the current
process, and InitGraf is called automatically for you by the system to
initialize that structure; you do not need to define your own
QDGlobals. The other Toolbox initialization routines are only
provided for backwards compatibility with System 7 applications.

• Next, the application creates an AEHandlerTable, a new data type
supported by the Mac OS 8 Apple Event Manager. System 7 also
supported handler tables, but only in a limited, implicit fashion; there
was only one handler table for the entire process, which the System 7
API AEInstallEventHandler modified. The Mac OS 8 Apple
Event Manager supports multiple handler tables, which may be stacked
or removed in LIFO order on an Apple Event dispatcher. The Apple
Event dispatcher is a new structure that serves as an event target; there
is a default dispatcher created automatically for each process, and an
application may create additional dispatchers. When processing an
Apple Event, the Apple Event Manager scans the stack of handlers on
the process dispatcher, looking for the first table that contains a
matching handler; that handler is then invoked with the event. (See the
document Apple Events in Mac OS 8 for more information.)

• After creating a handler table, the application installs a Quit handler
and pushes the handler table onto the process dispatcher. This ensures
that any Quit events received by the process will be sent to the
application’s handler.

• Next, the application creates its menus. Menus are discussed in more
detail below, in the section on HIObjects.

• Finally, the application calls AEReceive, specifying that the Apple
Event Manager should look for events on the process dispatcher, and
that it should continue looking for events forever until a handler returns
errAEReceiveTerminate. It’s also possible to tell AEReceive to
return after receiving just the next event.

To construct its menus, windows, and other user interface elements, a
Mac OS 8 application uses the HIObjects class library. HIObjects are
discussed next.

Mac OS 8 Only Application WWDC 1996

Mac OS 8 Only Application WWDC 1996

1.1.2 HIObjects

The HIObjects class library is a new object-oriented human interface
toolkit provided by Mac OS 8. It entirely replaces the System 7 Window,
Control, Dialog, Menu, and List Managers; a Mac OS 8 application will
not use any of those managers at all.

The HIObjects class library is implemented using SOMObjects for
Mac OS 8, the Macintosh implementation of IBM’s System Object Model.
SOM allows Apple to present a consistent, object-oriented programming
model for all user interface elements, making it easier for application
developers to learn and use the programming interfaces. It also allows
Apple to modify and enhance the HIObjects class library in the future
without breaking existing clients, unlike the System 7 Toolbox APIs, in
which Apple was severely limited in the changes that could be made
without compromising backwards compatibility. SOM is also designed to
be language-independent, so the HIObjects class library may be used
from both C and C++.

The HIObjects class library is so named because most classes in it
descend from a single root class, HIObject. The descendants of
HIObject are HIWindow and HIPanel. HIWindows replace the
System 7 Window manager; they serve as containers for HIPanels.
HIPanels and their descendants provide the actual user interface
elements: all of the standard System 7 controls, a new set of controls
provided in Mac OS 8, static items such as text captions and pictures,
menus, lists, edit fields, and so on.

It’s important to note that HIObjects are not an application framework,
and are not meant to replace Apple or third-party application frameworks.
An application framework typically provides a default implementation of
an event loop, document support, a z-ordered and clipped view system for
subdividing window content, and many other higher-level features. The
HIObjects class library provides none of these features; it is strictly a
user-interface toolkit that may be used by applications or by frameworks to
build higher-level components and structures.

A Mac OS 8 application written in C might create an HIWindow like this:

static void CreateSampleWindow(Environment* ev,
 Rect* bounds,
 ResID titleID,
 const StringPtr text,
 AEHandlerTableRef windowTable)
{

Mac OS 8 Only Application WWDC 1996

Mac OS 8 Only Application WWDC 1996

HIWindow* newWindow;
RefLabel label={kHelloCreator, kDocumentID};

newWindow = HIWindowNew();
_InitWindow(newWindow, ev,

&label,
bounds,
kHIWindowNormalClass,
kHIWindowDocumentVariant,
kHIWindowStandardDocumentAttributes
| kHIWindowQuitOnClose,

 (HIRootPanel*) kHIWindowDefaultRootPanel,
(HIWindow*) kHIFirstWindowOfClass);

MyPushWindowEventTable(newWindow, ev,
 windowTable);
SetHIObjectTextTitle(newWindow,
 ev, titleID);
AddCollectionItem(
 _GetCollection(newWindow, ev),
 'TEXT',
 0,
 StrLength(text) + 1,
 text);
_Show(newWindow, ev);

}

static void MyPushWindowEventTable(HIWindow*
window, Environment* ev, AEHandlerTableRef
sourceTable)
{

AEDispatcherRef dispatcher;
AEHandlerTableRef tempTable;

dispatcher = _GetEventDispatcher(window,
 ev);
AEShareHandlerTable(sourceTable,
 (void*) window,
 &tempTable);
AEPushDispatcherHandlerTable(dispatcher,
 tempTable);

}

Mac OS 8 Only Application WWDC 1996

Mac OS 8 Only Application WWDC 1996

• Because this sample is written in C, the application uses the
HIWindowNew() function to allocate memory for the window. An
application written in C++ could simply say “new HIWindow”.

• After allocating the window, the application calls the window’s
InitWindow method to initialize it. All HIObjects share a common
two-step initialization; first, the object is allocated; second, the object is
initialized. No HIObject may be used before it is initialized. In this
sample, the application specifies that:

•this window should go in the normal document layer of windows
(kHIWindowNormalClass)
•its appearance should be that of a document
(kHIWindowDocumentVariant)
•it has a standard set of attributes, including close, zoom, collapse,
and grow boxes, and that it automatically sends a Quit Apple Event
when closed (kHIWindowStandardDocumentAttributes |
kHIWindowQuitOnClose)
•it should receive a default root panel automatically to hold any
HIPanels that may be placed into the window
(kHIWindowDefaultRootPanel)
•it should be positioned at the front of the window z-order
(kHIFirstWindowOfClass)
•

• As described in the Events discussion above, each process has an Apple
Event dispatcher associated with it. Each window also has an Apple
Event dispatcher associated with it, and Mac OS 8 automatically sends
a predefined set of events to a window as necessary. When a window
needs to be updated, for example, its dispatcher will receive an update
Apple Event. In this example, the application has created an Apple
Event handler table that will be used by each of its windows. After
creating the window, the application uses its own utility routine
MyPushWindowEventTable to clone the handler table and then
push the cloned reference onto the window’s dispatcher.

• After installing the event handler table, the application uses the
SetHIObjectTextTitle routine to set the title of the window. The
source code for this routine is provided on the WWDC ’96 CD in the
HelloWorldC sample application

• Next, the application associates some window-specific data with the
window using the window’s collection. The Collection Manager,
originally provided with QuickDraw GX, is used by the HIObjects
class library to provide each HIObject with an extensible collection of
application-specific data.

• Finally, since all HIObjects are invisible when initially created, the
application shows the window.

Mac OS 8 Only Application WWDC 1996

Mac OS 8 Only Application WWDC 1996

To create some simple menus, A Mac OS 8 Application might use the
following code:

static void CreateMenus(Environment* ev)

{

HIMenu* rootMenu;
HIMenu* scratchMenu;
HIStateChangeCallbackRef scratchRef;

// menu bar
rootMenu = HIMenuNew();
_InitMenu(rootMenu, ev, NULL);
_AddItems(rootMenu, ev, kHIFirstItem, 2);

// Apple menu
scratchMenu = HIMenuNew();
_InitMenu(scratchMenu, ev, NULL);
_AddItems(scratchMenu, ev,
 kHIFirstItem, 1);
_AddStateChangeCallback(scratchMenu, ev,
(HIStateChangeCallbackProcPtr) MenuChanged,
 &scratchRef);
SetHIObjectTextTitle(scratchMenu,
 ev, kAppleTitleID);
SetupMenuItem(scratchMenu, ev, 0,
 kAboutItemID, 0, kAboutID);
_SetItemChild(rootMenu, ev,
 0, scratchMenu);

// File menu
scratchMenu = HIMenuNew();
_InitMenu(scratchMenu, ev, NULL);
_AddItems(scratchMenu, ev,
 kHIFirstItem, 1);
_AddStateChangeCallback(scratchMenu, ev,
(HIStateChangeCallbackProcPtr) MenuChanged,
 &scratchRef);
SetHIObjectTextTitle(scratchMenu,
 ev, kFileTitleID);
SetupMenuItem(scratchMenu, ev, 0,
 kQuitItemID, 'Q', kQuitID);

Mac OS 8 Only Application WWDC 1996

Mac OS 8 Only Application WWDC 1996

_SetItemChild(rootMenu, ev, 1,
 scratchMenu);

_SetRootHIMenu(ev, rootMenu);
_Show(rootMenu, ev);
_Draw(rootMenu, ev, NULL, NULL);

}

• In the HIObjects class library, the System 7 menu bar has been
replaced by the concept of a root menu which contains other menus.
The root menu is special in that it is drawn in the menu bar area of the
screen; however, in other respects it is exactly the same as any other
menu. The application therefore first creates and initializes a root menu,
and adds two empty items to it to hold the Apple and File menus.

• Next, the application creates the Apple menu. It adds one empty to the
menu, to hold the About menu item, and then calls the
SetupMenuItem utility routine to set the contents of that item. The
application also attaches a state-changed callback to the menu. Each
HIObject has associated with it a list of state-changed callback
functions that are called under predefined circumstances when part of
the object’s state changes. A menu, for example, calls its state-changed
callbacks when a selection is made from the menu. The application’s
state-changed callback is shown below.

• After creating the Apple menu, the application creates the File menu in
the same way, and then sets its root menu as the root menu known to
the HIObjects class library. Finally it shows and draws the root
menu.

static void SetupMenuItem(HIMenu* menu,
 Environment* ev,

 HIItemIndex item,
 ResID textID,
 UInt16 accelerator,
 OSType code)

{
RefLabel label;

label.creator = kHelloCreator;
label.id = code;

Mac OS 8 Only Application WWDC 1996

Mac OS 8 Only Application WWDC 1996

SetListItemTextImage(menu, ev, item,
 textID);
if (accelerator != 0)
{
 _SetItemAccelerator(menu, ev,
 item, kHIAcceleratorCommand,
 accelerator);
}
_SetItemRefLabel(menu, ev, item, &label);

}

• The application uses the SetupMenuItem utility function to prepare
its menu items. SetupMenuItem uses the
SetListItemTextImage routine to load the text of the menu item
from a TextObject resource and install it into the menu title. The source
code for this routine is provided on the WWDC ’96 CD in the
HelloWorldC sample application. SetupMenuItem also sets the
RefLabel of the menu item. A RefLabel is a structure used by
Mac OS 8 that contains two OSTypes. It is used as an identifier for a
particular part of the system. The HIObjects class library provides
space for a RefLabel for each HIObject and for each item in a
menu or list. In this case, the application is using the RefLabel on the
menu item to uniquely identify which item was selected in its state-
changed callback:

static void MenuChanged(Environment* ev,
 HIStateChangeCodeCreator creator,
 HIStateChangeCode whatHappened,
 HIObject* object)
{

RefLabel label;

if (creator != kHIObjectAppleCreator ||
whatHappened != kHIStateChangeItemSelected)
 return;

_GetItemRefLabel((HIMenu*) object, ev,
 _GetSelectedItem((HIMenu*) object,
 ev),
 &label);

Mac OS 8 Only Application WWDC 1996

Mac OS 8 Only Application WWDC 1996

switch (label.id)
{

case kAboutID:
 ShowAbout(ev);
 break;

case kQuitID:
 SendQuit(true);
 break;

default:
 break;

}
}

• A state-changed callback receives two OSTypes classifying what
happened: a creator code indicating the owner of the code, and a
specific constant for each kind of state change. All state-changed codes
produced by the HIObjects class library use
kHIObjectAppleCreator as the creator code. In its state-changed
callback, the application determines which menu item was selected by
looking at the item’s RefLabel. It then dispatches to the correct
handler for that item.

This overview only describes a few areas of the HIObjects class library.
For a more complete discussion, see the document Human Interface
Toolbox, particularly chapter 1, “Introduction to the Mac OS 8 Toolbox.”

1.2 Utility Applications

Utility applications are a class of User Interface applications that are not
document-centric, but do make use of the user interface and do interact
with the user.

Mac OS 8 will enable these types of applications by allowing the
application to control several aspects of the user interface:

Mac OS 8 Only Application WWDC 1996

Mac OS 8 Only Application WWDC 1996

1. MenuBar - Mac OS 8 Only utility applications determine if and when
the MenuBar should be displayed. The system will not assume that the
MenuBar must be available.

2. Process Menu - Mac OS 8 Only utility applications determine if and
when their process name should appear in the Process Menu. Coupled
with the MenuBar control (above), the utility application can be user-
accessible and controllable during part of its lifetime, and “invisible”
during others.

3. User Input Focus - Mac OS 8 Only utility applications will be able to
acquire and release the User Input focus. This allows the utility
application to receive user input events (e.g. keyboard and mouse
events) even when it is not the foreground process.

1.3 Factored Applications

Factored applications are a class of User Interface applications that are
structured in such a way as to maximize user interface response and
perceived performance. In addition, factored applications will typically
make better use of the system by maximizing the advantages of preemptive
multi-tasking.

Factoring Your
App in System 7.x

The idea of factoring your application into a user interface (“front half”)
part and the response (“engine”) part is not new to Mac OS 8. Applications
that are scriptable and recordable are already factored to a degree.
Mac OS 8 allows you to take a System 7 factored application and factor it
further into separate preemptive tasks.

Mac OS 8 provides preemptive tasking, synchronization services and a
reentrant Apple Event Manager. With these services, you can further
separate your application into functional categories. In this scenario, you
could send all computations to the computational task, the file system work
to the filesystem task, etc.

If more fine-grained concurrency is desired, you can even consider a task
oriented division where the "back-end" work associated with the user
command is accomplished by a task. In this scenario, the task could be
created dynamically to act upon the user’s command. When the work
associated with this command is done, the task could terminate. Another
alternative is to have a "pool" of tasks waiting to act on the next user
command.

Mac OS 8 Only Application WWDC 1996

Mac OS 8 Only Application WWDC 1996

1.4 How To Build a Mac OS 8 Only User Interface
Application

A Mac OS 8 Only application requires the interfaces and libraries on the
Mac OS 8 Developers Release: Compatibility Edition CD. This release
will provide helpful feedback while you are compiling, linking and running
your application.

Interfaces The Mac OS 8 version of the interfaces, like all Apple interfaces, are
universal to all Apple software. These are the interfaces that Apple
engineers use to write their software. The Mac OS 8 Developers Release:
Compatibility Edition CD will include the latest version of our interfaces.

Libraries In addition to the interfaces on the CD, we will include stub libraries on the
CD to link your application against. These libraries correspond to the
different types of products you might build. They allow you to link against
one library without having to know what specific library the service (and
symbol) in question came from.

Compiling Your
Application

To link a Mac OS 8 Only application, use the BUILDING_FOR_SYSTEM8
compiler flag to indicate to the system that you are building an application
which only runs on Mac OS 8.

Linking Your
Application

To link a Mac OS 8 Only application, use the AppMacOS8.stubs
library in your development environment. Linking against this library
ensures that you will not import facilities which are deprecated. The
Mac OS 8 Only application does not link against InterfaceLib. It only links
against libraries that are needed, and only requires these libraries and their
dependent libraries at runtime. This allows Mac OS 8 Only applications
which uses fewer system services to consume fewer system resources.

Running Your
Application

When running your application against the debug version of the system
release (on the Mac OS 8 Developers Release: Compatibility Edition),
you may encounter debugger breaks which detect unsupported or
discouraged usage patterns. This will help you determine how well your
application will run.

Mac OS 8 Only Application WWDC 1996

Mac OS 8 Only Application WWDC 1996

2.1 Server Programs

Mac OS 8 provides the foundation for a new Application Model, the
Server. Servers are defined to be preemptive, faceless applications running
in their own address space which are independent of the Macintosh
Toolbox environment.

What should be written as a Server? Applications that:

• Are very performance sensitive
• Require a fully preemptive run-time environment
• Require the full protection of their own address space
• May need to run independent of an Application invocation
• May need to remain running across a Toolbox Restart
• Typically service multiple clients (applications &/or machines)
• Typically have no (or little) user interface

Examples of typical Server modeled Applications include: databases, mail
handling, backup systems, ray-trace engines, personal information
management systems, font Servers, etc. The closest thing (in principle) to
Mac OS 8 Servers in System 7.x are faceless background applications. In
addition, some existing System 7.x Extensions (INITs), Drivers (DRVRs)
and Time Manager tasks are perfect candidates for re-writing as Mac OS 8
Servers.

Servers can be designed using a variety of Mac OS 8 System Services. The
choice of which combination of services to use depends on what the Server
is trying to do and what environment it requires.

2.1.1 Tasking Models

One of the first design choices one must make when writing a Server is
whether the Server program uses one or multiple tasks.

Choosing how tasks are used to implement the Server determines the load
handling characteristics and efficiency of that service. There are several
basic options with many hybrids possible. The tasking options chosen will
determine the requirements for synchronization (locking), request
completion notification (async, sync), request dispatch, and protocol.

Single,
Synchronous Task

The simplest task structure is a single task that handles one request at a
time. No locking is needed and all requests are made synchronously. The

Mac OS 8 Only Application WWDC 1996

Mac OS 8 Only Application WWDC 1996

request dispatch is usually a FIFO and the client/Server protocol cannot
support any circular dependencies. In this case, the Server cannot make a
request that will result in another request to itself (since the Server makes
all requests synchronously, it would end up waiting for a request to itself to
complete – a request that it would never receive).

The main benefits of this tasking structure are simplicity and low system
utilization. The downside is a lack of scalability in request handling. Since
only one request is handled at a time, no parallelism is possible. However,
if this is an occasionally used or stand-alone service with minimal
performance requirements, then this task structure is a good choice.

This simple tasking model is probably a good choice for prototyping a
Server program. Some services have no need of more than one task.

Single,
Asynchronous
Task

A variation on a single task structure uses asynchronous requests to
implement parallelism within one task. A new request can be processed
while waiting asynchronously for previous request processing to complete.
This technique will only achieve parallelism if the service implements or
uses IO bound processing (or other non-compute bound processing). This
single task, asynchronous programming model generally uses less in terms
of system resources than a multi-tasking model.

Some algorithms are simpler to implement in an asynchronous manner,
others are more complex. For example, a file copy loop can be written very
efficiently using asynchronous IO requests, whereas a multi-tasked version
using synchronous IO requests would require a locking structure to manage
access to shared buffers. On the other hand, if multiple layers of software
are used to implement the service and the layers each independently make
IO requests, then synchronous programming is much simpler because it
allows straightforward exposition of the algorithm in each layer without the
need for complex state machines.

Multi-Task
Servers

There are many reasons why one might want to use multiple tasks in a
Server (a.k.a. “threading” a Server). Two common reasons are complexity
and performance.

Functional Multi-
Tasking

Functional tasking uses a task for each functional component of a Server.
For example, if a Server uses both a network connection and the local file
system, one task would handle the network and another would perform the

Mac OS 8 Only Application WWDC 1996

Mac OS 8 Only Application WWDC 1996

file IO. When the processing requirements are non-uniform for all the types
of requests a Functional Multi-Tasking model can work quite well.

Using multiple tasks for different areas of functionality can reduce
complexity when the state associated with a functional component is solely
managed by the task that services that component.

Load Balance
Multi-Tasking

With Load Balance Multi-Tasking, every task can handle any request.
Requests are distributed among a pool of tasks in order to balance load
across the available system resources.

There are several possible algorithms for distributing requests among the
various tasks. For example, if the protocol is connection oriented, then a
task can be allocated for each connection. This preserves request order per
connection and can greatly simplify synchronization and error recovery
mechanisms.

The primary reason for using multiple-tasks in this manner is to maximize
execution overlap. Generally, this will result in better performance.

2.1.2 Transport

Another design choice for Server writers is which transport to use.
Mac OS 8 supports three different types of transports for Server programs:
Open Transport, Apple Events and Microkernel Messaging.

Open Transport Open Transport is Apple solution to transport-independent network. Open
Transport based servers do not need to know what protocol they are using,
and can provide a service over multiple network protocols (e.g. TCP/IP,
AppleTalk, XNS,.etc.). Most network based services, such as FileShare
servers and Web servers, should use Open Transport.

Open Transport based servers may also use Apple Events or Microkernel
Messaging to receive local (non-network) requests.

For more information on Open Transport, see Inside Macintosh: Open
Transport.

Apple Events Apple Events allow a Server to be both transport independent and network
independent. Servers based on Apple Events do not need to know that their
clients are local or remote.

Mac OS 8 Only Application WWDC 1996

Mac OS 8 Only Application WWDC 1996

In addition, Apple Events provides a robust and high-performing data-
model which deals with complex data types which do not lend themselves
to Microkernel Messaging.

Apple Events are much more central to the programming model in
Mac OS 8. See “Events” on page 38.

Sample Code The following code is typical of an Apple Event based Server program
(with error recover code removed for clarity):

OSStatus initialize(ServerID serverID)
{

OSStatus status;
AEDispatcherRef myRef;
KernelProcessID myProcess =
 CurrentKernelProcessID();

myRef = AEGetDefaultDispatcher();

// turn my default AEDispatcherRef into a
// global AEDispatcherID
status = AEGetEventDispatcherID(myRef,
 &gAEDispatcherID);

// Create gSelfAddress
status = AECreateDesc(typeKernelProcessID,
 &myProcess,
 sizeof(KernelProcessID),
 &gSelfAddress);

status = AECreateAppleEvent(
kSimpleAEServerClass,
kClientEventID,
&gSelfAddress,
kAutoGenerateReturnID,
0,
&gaevt);

status = AECreateAppleEvent(
kSimpleAEServerClass,
kTimerID,
&gSelfAddress,
kAutoGenerateReturnID,
0,

Mac OS 8 Only Application WWDC 1996

Mac OS 8 Only Application WWDC 1996

&gTimerAppleEvent);

status = AECreateNotifier(&gTimerAppleEvent,
 &gTimerNotification);

status = initializeTimer();

// let Server Mgr know that the server is up
// and ready to take requests
// (pass in AEDisptcherID to Server Mgr for
// client lookup via ServerLookup())
status = ServerCreated(serverID,
 gAEDispatcherID);
return(noErr);

}

The initialize routine does the work necessary to get the server ready to
receive requests from a client (e.g. an application). While the actual
initialization will vary from Server to Server, all Apple Event based Servers
must call ServerCreated passing the serverID that they were passed
in their main entry point, and the AEDispatcherID that they are
"listening" to.

Here’s a short description of the code above:

• AEGetEventDispatcherID is called to turn the
AEDispatcherRef (which is only valid in the context in which it is
returned) into a system-unique address, a AEDispatcherID.

• Next, AECreateDesc is called to create an address descriptor for use
in subsequent AECreateAppleEvent calls.

• The next two AECreateAppleEvent calls are done at initialization
time as an optimization. Since these events are reused, the are allocated
at initialization time and not disposed. The use the gSelfAddress to
address the AppleEvents.

• The call to AECreateNotifier is used to turn a
KernelNotification into an AppleEvent. Many microkernel,
IO, and Filesystem asynchronous calls use KernelNotification
to inform the caller of the completion of the call. The converts this
notification into an AppleEvent based notification.

• The initializeTimer routine is an example of how to use the
microkernel SetTimer call with AppleEvents (see description below).

Mac OS 8 Only Application WWDC 1996

Mac OS 8 Only Application WWDC 1996

• Finally, ServerCreated is called. The serverID that is passed
into main must be passed back to the Server Mgr along with the
AEDispatcherID that clients should use to communicate with the
Server.

The following code shows the initializeTimer routine mentioned
above:

OSStatus initializeTimer()
{

OSStatus status;
AbsoluteTime expirationTime;

// set expiration time to 3 seconds in the
// future
expirationTime = AddDurationToAbsolute(

3 * kDurationSecond,
UpTime());

status = SetTimer(&expirationTime,
&gTimerNotification,
kNilOptions,
NULL);

return(status);
}

The above code initializes a time (AbsoluteTime) and calls the
microkernel call SetTimer. This call notifies the caller according to the
microkernel notification record it is passed when the time it is passed has
expired. In this case, the notification record (KernelNotification)
has already been initialized by the AECreateNotifier call.

The following code shows a simple "main" routine of an AppleEvent
server:

OSStatus ServerMain (ServerID serverID)
{

OSStatus status;
AEHandlerTableRef handlertableref;

DebugStr("\pSimpleAEServer main()...");

// initialization code

Mac OS 8 Only Application WWDC 1996

Mac OS 8 Only Application WWDC 1996

status = initialize(serverID);

// install my handlers
status = AEGetDispatcherTopHandlerTable(

AEGetDefaultDispatcher(),
&handlertableref);

status = AEInstallHandler(handlertableref,
kSimpleAEServerClass,
kTimerID,
HandleTimerEvent,
NULL);

status = AEInstallHandler(handlertableref,
kSimpleAEServerClass,
kClientEventID,
HandleMyEvent,
NULL);

// main event loop
status = AEReceive(AEGetDefaultDispatcher(),

kAEReceiveForever);

return (status);
}

Microkernel
Messaging

Microkernel Messaging.

2.1.3 Macintosh Toolbox Usage by Servers

Mac OS 8 Servers are defined to be preemptive, faceless, applications
which run completely independently of the Macintosh Toolbox
environment. They are developed using the Mac OS 8 Only environment.
As such, there are some typical Toolbox usage scenarios which would not
be implemented the same way when developing a Server.

Some typical Toolbox usages and their replacement recommendations
follow.

Mac OS 8 Only Application WWDC 1996

Mac OS 8 Only Application WWDC 1996

Graphics No direct access to the screen is permitted for Servers. Off-screen
rendering using the QuickDraw GX and QuickDraw 3D graphics systems
is supported and a rendered image may be passed back to a facefull client
for drawing to the screen.

Dialogs, Alerts,
Menus, Controls,
Windows, etc.

The HI Toolbox cannot be used by Servers. All HI interaction will need to
occur via an Application frontend communicated to via Apple Events or
microkernel messaging. User interface for Servers should be minimized
and eliminated where possible.

Events The Event Mgr is not available to Servers. Only Apple Events may be
received, and the Mac OS 8 Apple Event dispatchers are the preferred
means to receive them.

Resources The Resource Manager is not available to Servers. Resources can only be
read or written implicitly through other Apple provided services (e.g.
Preferences Mgr) that make use of resources.

Memory The Memory Manager is not available to Servers. Memory should be
allocated using Dynamic Storage Allocation Services and memory
allocators.

Files The System 7 Files API is not available to Servers. The File Manager API
should be used instead.

Notification
Manager

The Notification Manager is available to Servers. User-visible notification
may also be done via a front-end application communicated to via Apple
Events.

Translation
Manager

The Translation Manager is available to Servers.

Component
Manager

The Component Manager is not available to Servers. Plug-in mechanisms
should be implemented using either SOM or CFM directly.

Mac OS 8 Only Application WWDC 1996

Mac OS 8 Only Application WWDC 1996

Networking Servers should use the following APIs to access the network.

• Open Transport
• Apple Events

Preferences and
Configuration
Files

Servers should use the Preferences Manager to maintain all configuration
information. UI for configuration should be provided via an administrative
application.

System Logging
Services

The System Logging Service provides a centralized logging service for
errors and informational messages. The Server implementor should attempt
to put enough information in the log to make diagnosis of problems easy
but not so much information that figuring out what is relevant is difficult.
To avoid annoying the user, the log should be used in preference to the
notification mechanism. In addition, a log message should always be
generated before sending a notification to the user.

Servers should not create their own status log files. Cleanup and rotation of
lots of log files is difficult and complicates Server upgrade.

2.2 How To Build a Mac OS 8 Only Server Program

A Mac OS 8 Only Server requires the interfaces and libraries on the
Mac OS 8 Developers Release: Compatibility Edition CD. This release
will provide helpful feedback while you are compiling, linking and running
your Server.

Interfaces The Mac OS 8 version of the interfaces, like all Apple interfaces, are
universal to all Apple software. These are the interfaces that Apple
engineers use to write their software. The Mac OS 8 Developers Release:
Compatibility Edition CD will include the latest version of our interfaces.

Libraries In addition to the interfaces on the CD, we will include stub libraries on the
CD to link your Server against. These libraries correspond to the different
types of products you might build. They allow you to link against one

Mac OS 8 Only Application WWDC 1996

Mac OS 8 Only Application WWDC 1996

library without having to know what specific library the service (and
symbol) in question came from.

Compiling Your
Server

To link your Server, use the BUILDING_PREEMPTIVE_CODE
compiler flag to indicate to the system that you are building an Server
which only runs on Mac OS 8.

Linking Your
Server

To link a Mac OS 8 Only server, use the Server.stubs library in your
development environment. Linking against this library ensures that you
will not import facilities which are deprecated. Server programs do not link
against InterfaceLib. As with Mac OS 8 Only applications, Servers only
link against libraries that are needed, and only requires these libraries and
their dependent libraries at runtime. This allows Servers which uses fewer
system services to consume fewer system resources.

Running Your
Server

When running your Server against the debug version of the system release
(on the Mac OS 8 Developers Release: Compatibility Edition), you may
encounter debugger breaks which detect unsupported or discouraged usage
patterns. This will help you determine how well your Server will run.

To facilitate development, you can place your Server in the “Mac OS
Folder:Server Libraries” folder and it will be automatically launched each
time the system is restarted.

Mac OS 8 Only Application WWDC 1996

Mac OS 8 Only Application WWDC 1996

